Linux Networking
What is a network?

- A collection of devices connected together
- Can use IPv4, IPv6, other schemes
- Different devices on a network can talk to each other
- May be walls to separate different networks
Terminology Overview

• **IP Address**: the per-network unique identifier used to find you on a network
 ○ IPv4: 4 bytes, typically shown as decimal numbers, e.g. 123.234.321.003
 ■ Groups of IPv4 addresses are shown using /X notation, where X is fixed bits
 ■ 192.168.0.0/16 means 192.168 is fixed, but the 0’s can be any number 0-255
 ○ IPv6: 16 bytes, shown as hex numbers, e.g. 3614:DEAD:BEEF:4A7C:3614:::4A7C

• **MAC Address**: a globally unique identifier given to every network interface
 ○ 12 bytes, shown as hex numbers, e.g. dc:0e:a1:f3:fb:99
 ○ Not supposed to be changeable (but can be changed)

• **Subnet**: an isolated network separated from the global internet

• **MTU**: the maximum packet size sent from your interface

• **Gateway**: a device that routes traffic between two or more networks

• **NAT**: network address translation, used to allow devices to share IPs

• **DHCP**: a protocol for requesting IP addresses from a gateway

• **Subnet Mask**: a bitmask for finding the part of an IP is in subnet
 ○ e.g. 255.255.255.0: IP 192.168.1.123 masked by 255.255.255.0 equals 0.0.0.123
The Internet and Networks

- Internet was originally intended to have all devices publicly addressable via IPv4, without need to wall off certain sections.
- Privacy, security, and IPv4 exhaustion concerns led to the creation of isolated networks.
- Individuals on isolated networks needed methods to contact the outside world via a single public IP address.
- Private networks can use 192.168.0.0/16, 10.0.0.0/8, and 172.16.0.0/12.
 - These ip addresses can NEVER be used for a public facing IP.
 - All other ip addresses can be actual websites/destinations, so they CANNOT be used for personal networks.
NAT and Subnetting

- Your home/work network will use a gateway to contact the outside world.
- Your private network will have its own subnet, typically 192.168.1.0/24.
 - This means that your computer can directly contact anything in that subnet, but must go through the gateway to contact anything else.
- The router performs Network Address Translation (NAT) to keep track of what packets go to which computer on the subnet.
Networking and Linux

- Most non-server distros include a connection manager, such as
 - Network-manager (gui, Most common)
 - Netctl (cli, Arch Linux)
 - wicd (cli)
- Manual configuration is always available, typically using
 - ifconfig (most common, legacy)
 - ip (newer)
- DHCP can be performed using:
 - dhclient (most common)
 - dhcpcd
- Make sure to stop/disable the connection manager when trying to do manual configuration (service network-manager stop or similar)
DHCP Network Connection

- The easiest way to connect to a network is with DHCP
- Most computers can be set up using:
 - `dhclient <device>`
 - `dhcpcd <device>`
- This will get the machine and ip, setup the subnet mask, and find DNS servers
IFCONFIG/IP Common Commands

- **Show connection status:** `ifconfig <device>` or `ip addr show <device>`
 - Device is the name of the interface (eth0, eth1, wlan0, etc)
 - Can be left blank to show all

- **Turn on/off** `ifconfig <device> <up/down>` or `ip link set <device> <up/down>`

- **Set IP Address:**
 - `ifconfig <device> <ip> netmask <netmask>`
 - `ip addr add <ip>/<mask> dev <device>`
 - A netmask of 255.255.255.0 is the same as /24, 255.0.0.0 is /8

- **Set Gateway:**
 - `route add default gw <gateway ip>`
 - `ip route add default via <gateway ip> dev <device>`
DNS Setup

● DNS is used to find the ip address of a web service based on its text name
 ○ e.g. purdue.edu -> 128.210.7.200
● DNS Servers must be added in order to be able to use text website names instead of IPs
● Linux looks for DNS servers in /etc/resolv.conf
● For simple setup, simply write, one per line: nameserver <ip>
● To add a search path, write: search <domain>
 ○ A search path of purdue.edu would make typing mypurdue into your browser automatically check mypurdue.purdue.edu
● resolv.conf is automatically rewritten anytime you run a DHCP client or when your connection manager runs a DHCP client.
● Purdue’s DNS servers are: 128.210.11.5, 128.210.11.57
● Engineering Computer Network’s DNS is: 128.46.154.76
Static IP Setup

- If you need a simple static ip setup, files can be edited to save the setting between reboots
- Debian Based: /etc/network/interfaces
- Fedora Based: /etc/sysconfig/network and /etc/sysconfig/network-scripts/ifcfg-<device>
- Archlinux: use netctl or write a startup script that calls ip
- Quick setup details available at http://goo.gl/8jEKSe
Firewalls

- Firewalls allow certain computers to access network services on your device while prohibiting others.
- The Linux kernel contains iptables, which is used for all firewalls.
- Several software packages exist to generate and manage iptables.
- Simple setups can be done using scripts that run on startup.
iptables simple firewall

● iptables follows the following syntax (many variations exist):
 ○ iptools -A <chain> -p <protocol> <filters> -j <destination chain>
 ○ Default chains are INPUT, OUTPUT, FORWARD, and ACCEPT. Custom chains can be made.
 ○ protocols can be tcp, udp, or icmp
 ○ filters can be things like --dport 22 (destination port 22)

● A Simple firewall that allows only SSH could be:
 ○ iptables -P FORWARD DROP; iptables -P OUTPUT ACCEPT; iptables -P INPUT DROP
 ○ iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
 ○ iptables -A INPUT -i lo -j ACCEPT
 ○ iptables -A INPUT -p tcp --dport 22 -j ACCEPT

● A more robust simple stateful firewall example is at https://wiki.archlinux.org/index.php/Simple_stateful_firewall