

Source Control: Fundamentals
and Git

Purdue Linux Users Group
CSWN

Speaker: Thor Smith

Outline

 Introduction to Source Control

 Source Control Software

 Source Control Philosophies?

 Create a Project in Git

 List of Commands

 Adding Changes to the Stage

 Commiting Changes to the Project

 Tracking Your Changes

 Branching Out

 Merging Branches

Indroduction to Source Control

 Source control (also known as version control)
 developed to allow multiple versions of a project to

exist.
 Separates the working version from developing

versions.
 Allows groups of people to work on a single project.

 Steps
 Make a local copy of files.
 Change them and confirm your changes.
 Write your new changes to the main project.

Source Control Software

 CVS

 SVN

 Git

 Hg

 Bazaar

Source Control Philosophies?

 Two major philosophies
 Centralized Version Control

 There is one master version of the project which
everyone checks into

 Each person checks out a view of the project.
 Decentralized Version Control

 There may be many master versions of a project.
 A single project may diverge in many different

directions.
 Each person creates a clone of the project.

Create a Project in Git

 Download the packages for Git
 Sudo apt-get install git-core gitosis gitk

 Git-core //git itself
 Gitosis //for hosting git repositories
 Gitk //graphical visualization of git repository

 Create a project folder and initialize Git
 Mkdir myproject
 Cd myproject
 Git init

List of Commands

 Help Commands
 Git version
 Git help <command>

 Other commands
 git init; git add; git status; git log; git commit -m; git

diff; git show; git branch; git checkout <branch>; git
mergetool; git config user.name ”My Name”; git
merge

Adding Changes to the Stage

 In Git, the stage is a buffer between the
changes you make in your directory and what
has been committed to your project.

 If you have an existing Project:
 cp /path/to/my/project .
 git add -A

 If you are starting from scratch:
 echo ”// This is a c comment” > program.c
 git add program.c

Committing Changes to the
Project

 Changes do not automatically get officially
added to your project when you edit, create, or
delete files. This helps protect the integrity of
your current project.

 To commit changes:
 git commit -m ”Describe what I committed”

 To remove a file:
 git rm <file>

Tracking Your Changes

 Some tracking commands will help you to
remember what you were working on and what
exactly you have changed about the project.

 Find out what has yet to be added to the stage:
 git diff

 Find out what will be committed from the stage:
 git diff --cached

 Find out both (above)
 git status

Tracking Your Changes

 Some tracking commands will allow you to see
the entire history of changes made to the
project.

 List the commits that have been made:
 git log

 List commits and see differences between
commits
 git log -p

Branching Out

 Branching allows you to make experimental
changes or to divide up changes that need to
be made to a project.

 The default branch for a new project is called
”master”.

 To create, delete, and list branches
 git branch <branchname>
 git branch -d <branchname>
 git branch

Branching Out

 Branches are completely independent of each
other, but they all contain the whole project.
(The project hasn't been copied. Your
differences have been logged.)

 To switch between branches:
 Git checkout <branch>

 To switch to a previous version of the project
 Git checkout HEAD^(version #) -b <branchname>

Merging Branches

 When you make enough changes on a branch
that you think should be included in your overall
project, you can merge your changes into the
project.

 Merge the contents of branch A into branch B
 Git checkout A
 Git merge B

 This can also serve to update branches to the
latest changes in the main project.

Merging Branches

 Occasionally you will encounter conflicts when
you merge from one branch to another.

 Git informs you of conflicts and puts both
versions in the file that has the conflict.

 Conflicts may be resolved by:
 Picking your favorite editor and opening the files
 Using ”git mergetool” to see and edit all files

involved.

 After it has been resolved type:
 git add <stuff>
 git commit

Questions???

Announcements

 Linux 201 session 2 is planned for two weeks
from today!! (April 11th)

 Open Source Gaming LAN will be hosted on
April 2nd in STEW 312 from 11:00am – 8:00pm.

 ”CS Events” on Facebook.
 https://www.facebook.com/group.php?gid=2229720439

 Resume Clinic on Thursday at 7:30 in
B151 hosted by CSWN.

https://www.facebook.com/group.php?gid=2229720439

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

