

Source Control: Fundamentals
and Git

Purdue Linux Users Group
CSWN

Speaker: Thor Smith

Outline

 Introduction to Source Control

 Source Control Software

 Source Control Philosophies?

 Create a Project in Git

 List of Commands

 Adding Changes to the Stage

 Commiting Changes to the Project

 Tracking Your Changes

 Branching Out

 Merging Branches

Indroduction to Source Control

 Source control (also known as version control)
 developed to allow multiple versions of a project to

exist.
 Separates the working version from developing

versions.
 Allows groups of people to work on a single project.

 Steps
 Make a local copy of files.
 Change them and confirm your changes.
 Write your new changes to the main project.

Source Control Software

 CVS

 SVN

 Git

 Hg

 Bazaar

Source Control Philosophies?

 Two major philosophies
 Centralized Version Control

 There is one master version of the project which
everyone checks into

 Each person checks out a view of the project.
 Decentralized Version Control

 There may be many master versions of a project.
 A single project may diverge in many different

directions.
 Each person creates a clone of the project.

Create a Project in Git

 Download the packages for Git
 Sudo apt-get install git-core gitosis gitk

 Git-core //git itself
 Gitosis //for hosting git repositories
 Gitk //graphical visualization of git repository

 Create a project folder and initialize Git
 Mkdir myproject
 Cd myproject
 Git init

List of Commands

 Help Commands
 Git version
 Git help <command>

 Other commands
 git init; git add; git status; git log; git commit -m; git

diff; git show; git branch; git checkout <branch>; git
mergetool; git config user.name ”My Name”; git
merge

Adding Changes to the Stage

 In Git, the stage is a buffer between the
changes you make in your directory and what
has been committed to your project.

 If you have an existing Project:
 cp /path/to/my/project .
 git add -A

 If you are starting from scratch:
 echo ”// This is a c comment” > program.c
 git add program.c

Committing Changes to the
Project

 Changes do not automatically get officially
added to your project when you edit, create, or
delete files. This helps protect the integrity of
your current project.

 To commit changes:
 git commit -m ”Describe what I committed”

 To remove a file:
 git rm <file>

Tracking Your Changes

 Some tracking commands will help you to
remember what you were working on and what
exactly you have changed about the project.

 Find out what has yet to be added to the stage:
 git diff

 Find out what will be committed from the stage:
 git diff --cached

 Find out both (above)
 git status

Tracking Your Changes

 Some tracking commands will allow you to see
the entire history of changes made to the
project.

 List the commits that have been made:
 git log

 List commits and see differences between
commits
 git log -p

Branching Out

 Branching allows you to make experimental
changes or to divide up changes that need to
be made to a project.

 The default branch for a new project is called
”master”.

 To create, delete, and list branches
 git branch <branchname>
 git branch -d <branchname>
 git branch

Branching Out

 Branches are completely independent of each
other, but they all contain the whole project.
(The project hasn't been copied. Your
differences have been logged.)

 To switch between branches:
 Git checkout <branch>

 To switch to a previous version of the project
 Git checkout HEAD^(version #) -b <branchname>

Merging Branches

 When you make enough changes on a branch
that you think should be included in your overall
project, you can merge your changes into the
project.

 Merge the contents of branch A into branch B
 Git checkout A
 Git merge B

 This can also serve to update branches to the
latest changes in the main project.

Merging Branches

 Occasionally you will encounter conflicts when
you merge from one branch to another.

 Git informs you of conflicts and puts both
versions in the file that has the conflict.

 Conflicts may be resolved by:
 Picking your favorite editor and opening the files
 Using ”git mergetool” to see and edit all files

involved.

 After it has been resolved type:
 git add <stuff>
 git commit

Questions???

Announcements

 Linux 201 session 2 is planned for two weeks
from today!! (April 11th)

 Open Source Gaming LAN will be hosted on
April 2nd in STEW 312 from 11:00am – 8:00pm.

 ”CS Events” on Facebook.
 https://www.facebook.com/group.php?gid=2229720439

 Resume Clinic on Thursday at 7:30 in
B151 hosted by CSWN.

https://www.facebook.com/group.php?gid=2229720439

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

